Evakuacija u nuklearnim katastrofama

Evacuation in nuclear disasters

Authors

  • Jovana Martinović Naučno-stručno društvo za upravljanje rizicima u vanrednim situacijama, Beograd, Dimitrija Tucovića 121

Abstract

Imajući u vidu porast broja zemalja u čijem posedu se nalazi nuklearno oružje i nuklearne elektrane, kao i složenost katastrofa povezanih sa nuklearnom energijom, postoji sve snažnija potreba za poboljšanjem mehanizama za smanjenje rizika i upravljanje nuklearnim katastrofama. Temeljno razmatranje i planiranje evakuacije, kao jedne od najznačajnijih faza upravljanja u katastrofama, od suštinskog je značaja za smanjenje negativnih uticaja na društvo i životnu sredinu u slučaju njihovog nastanka. Stoga, u ovom radu razmatraju se prošla iskustva, naučene lekcije i identifikovane slabosti u procesu planiranja i sprovođenja evakuacije kojima je potrebno posvetiti više pažnje u budućnosti. Unapređenje percepcije rizika o nuklearnim katastrofama putem adekvatnih i kontinuiranih edukativnih programa, pružanje psihološke i zdravstvene podrške nakon evakuacije ugroženog stanovništva i izrada efikasnih planova za zaštitu javnosti i radnika neki su od najznačajnijih prediktora uspešnog odgovora na posledice nuklearnih katastrofa.

Given the growing number of countries in possession of nuclear weapons and nuclear power plants, as well as the complexity of nuclear-related disasters, there is a growing need to improve risk mitigation and management mechanisms for nuclear disasters. Thorough consideration and planning of evacuation, as one of the most important phases of disaster management, is essential to reduce the negative impacts on society and the environment in the event of their occurrence. Therefore, this paper discusses past experiences, lessons learned and identified weaknesses in the evacuation planning and implementation process that need more attention in the future. Improving the perception of the risk of nuclear disasters through adequate and continuous educational programs, providing psychological and health support after the evacuation of the endangered population, and developing effective plans for the protection of the public and workers are some of the most important predictors of a successful response to nuclear disasters.


Keywords: nuclear energy; nuclear disasters; evacuation; planning; preparedness.

References

Akabayashi, A., & Hayashi, Y. (2012). Mandatory evacuation of residents during the Fukushima nuclear disaster: an ethical analysis. Journal of Public Health, 34(3), 348-351.

Aulady, M. F. N., & Fujimi, T. (2020). The influence of three basic attributes toward evacuation route knowledge among poor people community.

Belyakov, A. (2015). From Chernobyl to Fukushima: an interdisciplinary framework for managing and communicating food security risks after nuclear plant accidents. Journal of Environmental Studies and Sciences, 5(3), 404-417.

Buddemeier, B. R., & Dillon, M. B. (2009). Key response planning factors for the aftermath of nuclear terrorism.

Carnegie, J., & Deka, D. (2010). Using hypothetical disaster scenarios to predict evacuation behavioral response.

Covello, V. T., & Allen, F. (1988). Seven cardinal rules of risk communication. US Environmental Protection Agency. Policy Document OPA-87-020, Washington, DC.

Cutter, S., & Barnes, K. (1982). Evacuation behavior and three mile island. Disasters, 6(2), 116-124.

Cvetković & Martinović (2021). Upravljanje u nuklearnim katastrofama. Beograd: Naučno-stručno društvo za upravljanje rizicima u vanrednim situacijama.

Cvetković, V. M., & Gačić, J. (2016). Evakuacija u prirodnim katastrofama. Beograd: Zadužbina Andrejević.

Cvetković, V., & Martinović, J. (2020). Inovative solutions for flood risk management. International Journal of Disaster Risk Management, 2(2), 71-100.

Cvetković, V., Nikolić, N., Nenadić, R. U., Ocal, A., & Zečević, M. (2020). Preparedness and Preventive Behaviors for a Pandemic Disaster Caused by COVID-19 in Serbia. International Journal of Environmental Research and Public Health, 17(11), 4124.

Cvetković, V., Öcal, A., Lyamzina, Y., Noji, E., Nikolić, N., & Milošević, G. (2021). Nuclear Power Risk Perception in Serbia: Fear of Exposure to Radiation vs. Social Benefits. Energies, 14, 2464.

Cvetković, V., & Grbić, L. (2021). Public perception of climate change and its impact on natural disasters. Journal of the Geographical Institute Jovan Cvijic, 71(1), 43-58.

Cvetković, V., & Svrdlin, M. (2020). Vulnerability of women to the consequences of naturally caused disasters: the Svilajnac case study - Ugroženost žena od posledica prirodno izazvanih katastrofa: studija slučaja Svilajnac. Bezbednost, 62(3), 43-61.

Cvetković, V., & Jovanović, M. (2020). Examination of the factors that influence public perception of mythically-based human behavior in disaster conditions. Glasnik Srpskog geografskog društva, 100(2), 161-179.

Deng, Y., Zou, S., & You, D. (2018). Theoretical guidance on evacuation decisions after a big nuclear accident under the assumption that evacuation is desirable. Sustainability, 10(9), 3095.

Denis, H. (1995). Scientists and disaster management. Disaster Prevention and Management: An International Journal.

Dhamala, T. N., & Adhikari, I. M. (2018). On evacuation planning optimization problems from transit-based perspective. International Journal of Operations Research, 15(1), 2947.

Do, X. B. (2019). Fukushima Nuclear Disaster displacement: How far people moved and determinants of evacuation destinations. International journal of disaster risk reduction, 33, 235-252.

Hayakawa, M. (2016). Increase in disaster-related deaths: risks and social impacts of evacuation. Annals of the ICRP, 45(2_suppl), 123-128.

Hussaini, A. (2020). Environmental Planning for Disaster Risk Reduction at Kaduna International Airport, Kaduna Nigeria. International Journal of Disaster Risk Management, 2(1).

Hwang, Y., & Heo, G. (2021). Development of a radiological emergency evacuation model using agent-based modeling. Nuclear Engineering and Technology.

Jha, D. (2020). Indicator based assessment of integrated flood vulnerability index for Brunei Darussalam. International Journal of Disaster Risk Management, 2(2).

Kaur, B. (2020). Disasters and exemplified vulnerabilities in a cramped Public Health Infrastructure in India. International Journal of Disaster Risk Management, 2(1).

Keeney, R. L., & Von Winterfeldt, D. (1986). Improving risk communication. Risk analysis, 6(4), 417-424.

Kim, J., Kim, B.-J., & Kim, N. (2020). Perception-based analytical technique of evacuation behavior under radiological emergency: An illustration of the Kori area. Nuclear Engineering and Technology.

Kim, Y., Kim, M., & Kim, W. (2013). Effect of the Fukushima nuclear disaster on global public acceptance of nuclear energy. Energy Policy, 61, 822-828.

London Emergency Services Liaison, P. (2007). LESLP major incident procedure manual: The Stationery Office.

Morita, T., Nomura, S., Furutani, T., Leppold, C., Tsubokura, M., Ozaki, A., Oikawa, T. (2018). Demographic transition and factors associated with remaining in place after the 2011 Fukushima nuclear disaster and related evacuation orders. PLoS One, 13(3), e0194134.

Murakami, M., & Tsubokura, M. (2017). Evaluating risk communication after the Fukushima disaster based on nudge theory. Asia Pacific Journal of Public Health, 29(2_suppl), 193S-200S.

Nomura, S., Blangiardo, M., Tsubokura, M., Nishikawa, Y., Gilmour, S., Kami, M., & Hodgson, S. (2016). Post-nuclear disaster evacuation and survival amongst elderly people in Fukushima: A comparative analysis between evacuees and non-evacuees. Preventive medicine, 82, 77-82.

Öcal, A., Cvetković, V. M., Baytiyeh, H., Tedim, F. M. S., & Zečević, M. (2020). Public reactions to the disaster COVID-19: a comparative study in Italy, Lebanon, Portugal, and Serbia. Geomatics, Natural Hazards and Risk, 11(1), 1864-1885. doi:10.1080/19475705.2020.1811405

Ohba, T., Tanigawa, K., & Liutsko, L. (2021). Evacuation after a nuclear accident: Critical reviews of past nuclear accidents and proposal for future planning. Environment international, 148, 106379.

Ohtsuru, A., Tanigawa, K., Kumagai, A., Niwa, O., Takamura, N., Midorikawa, S., Chhem, R. K. (2015). Nuclear disasters and health: lessons learned, challenges, and proposals. The Lancet, 386(9992), 489-497.

Olawuni, P., Olowoporoku, O., & Daramola, O. (2020). Determinants of Residents’ Participation in Disaster Risk Management in Lagos Metropolis Nigeria. International Journal of Disaster Risk Management, 2(2).

Orita, M., Hayashida, N., Taira, Y., Fukushima, Y., Ide, J., Endo, Y., Takamura, N. (2015). Measurement of individual doses of radiation by personal dosimeter is important for the return of residents from evacuation order areas after nuclear disaster. PLoS One, 10(3), e0121990.

Perry, R. W. (1981). Citizen evacuation in response to nuclear and nonnuclear threats. Retrieved from

Rodríguez, H., Quarantelli, E. L., Dynes, R. R., Andersson, W. A., Kennedy, P. A., & Ressler, E. (2007). Handbook of disaster research (Vol. 643): Springer.

Sheppard, B., Rubin, G. J., Wardman, J. K., & Wessely, S. (2006). Terrorism and dispelling the myth of a panic prone public. Journal of public health policy, 27(3), 219-245.

Sonoda, Y., Ozaki, A., Hori, A., Higuchi, A., Shimada, Y., Yamamoto, K., Tsubokura, M. (2019). The premature death of a schizophrenic patient due to evacuation after a nuclear disaster in Fukushima. Case reports in psychiatry, 2019.

Tanigawa, K., Hosoi, Y., Hirohashi, N., Iwasaki, Y., & Kamiya, K. (2012). Loss of life after evacuation: lessons learned from the Fukushima accident. The Lancet, 379(9819), 889-891.

Thomas, P. J. (2017). Quantitative guidance on how best to respond to a big nuclear accident. Process Safety and Environmental Protection, 112, 4-15.

Uredba o sprovođenju evakuacije, "Službeni glasnik RS", broj 22 od 31. marta 2011.

Waddington, I., Thomas, P. J., Taylor, R. H., & Vaughan, G. J. (2017). J-value assessment of relocation measures following the nuclear power plant accidents at Chernobyl and Fukushima Daiichi. Process Safety and Environmental Protection, 112, 16-49.

Weinisch, K., & Brueckner, P. (2015). The impact of shadow evacuation on evacuation time estimates for nuclear power plants. Journal of emergency management (Weston, Mass.), 13(2), 145-158.

Xiongfei, Z., Qixin, S., Rachel, H., & Bin, R. (2010). Network emergency evacuation modeling: A literature review.

Yamin, T. (2011). Nuclear disaster management. IPRI Journal XI(2), 80-101.

Yasumura, S. (2014). Evacuation effect on excess mortality among institutionalized elderly after the Fukushima Daiichi nuclear power plant accident. Fukushima journal of medical science.

Yoshioka‐Maeda, K., Kuroda, M., & Togari, T. (2018). Difficulties of fathers whose families evacuated voluntarily after the Fukushima nuclear disaster. Nursing & health sciences, 20(3), 296-303.

Yuan, H., Wang, R., Zhang, X., Hu, Y., Zhang, F., Zhu, T., & Liu, H. (2019). Evacuation strategy optimization study based on system theory. IEEE Access, 7, 111232-111244.

Yuan, S., Chun, S. A., Spinelli, B., Liu, Y., Zhang, H., & Adam, N. R. (2017). Traffic evacuation simulation based on multi-level driving decision model. Transportation Research Part C: Emerging Technologies, 78, 129-149.

Zakon o smanjenju rizika od katastrofa i upravlјanja vanrednim situacijama, Službeni Glasnik RS br. 87/2018.

Zeigler, D. J., Brunn, S. D., & Johnson Jr, J. H. (1981). Evacuation from a nuclear technological disaster. Geographical review, 1-16.

Downloads

Published

2021-05-22

How to Cite

Martinović, J. (2021). Evakuacija u nuklearnim katastrofama: Evacuation in nuclear disasters. Zbornik Radova, 1(1), 27–43. Retrieved from http://zbornik.upravljanje-rizicima.edu.rs/index.php/d/article/view/3